Towards Modeling the Structure of Product Dependencies in Supply Networks to Identify Bottlenecks Among Suppliers

Daniel Henselmann, Andreas Harth
Agenda

1. Motivation
2. Supply Network Graph Model
3. Ontology
4. Limitations and Conclusion
Motivation

- Global **chip shortage** in 2021 forced car manufacturers to halt production
- One reason were **bottlenecks in the supply networks** of microchips
- Bottlenecks are suppliers with the **highest loss contributions** in consequence of a **disruption**, resulting in a high **dependency**
- Disruptions in supply networks **increase(d)**
- Bottlenecks occur due to the **structure** of supply networks
 ➢ Provide a **graph model representing the structure of supply networks** as a basis for network metrics to identify bottlenecks

TSMC as a bottleneck in BMW's supply network.
Choice of Supply Network Graph Model 1/2

- One could model the graph of a supply network through **enterprises**
- The dependency relationships between enterprises are **not (entirely) transitive**
- Model graph of supply network through **products and their supply relation**
Choice of Supply Network Graph Model 2/2

- The relation between a product and its enterprise enables to identify suppliers
- Alternative products affect dependencies
 - Model knowledge graph of supply network with an ontology
Comparison with ontology with the greatest overlap of scope from related work (PRONTO [1])

- Make ontology **usable for a wider audience** beyond ontologists
- Reduce **amount and complexity of data** required
 - Particular focus on **conciseness** (minimal number of vocabulary terms and avoidance of redundancy)

Ontology Methodology 2/3

Competency questions

Support the identification of bottlenecks among suppliers by providing data on a supply network

- How many derivational dependency paths from a product to another certain product are there in a supply network?
- How many/much of a certain product does the creation of a product require across the supply network?
- Which enterprise sells a certain product in the supply network?
Ontology Methodology 3/3

Modeling requirements

▪ Provide a representation of products that are available for (potential) customers.

▪ Provide a representation of the enterprise that sells a product.

▪ Provide a representation of derivational dependencies between products of different enterprises, specifically all dependencies where a product is (partially) consumed in the process of creating another product.

▪ Provide a representation of the quantity of a dependency.

▪ Provide a representation of a derivational dependency being split between alternative products.
Ontology Considerations

Abstraction levels of the product class from related work

- Product model vs. product instance ("a BMW iX" vs. "that blue BMW iX over there in the corner")
- Product vs. product class ("BMW iX" vs. "car")
- Product vs. product group/family ("BMW iX, superior edition, 1.8 TDI, …" vs. "BMW iX")
Ontology Result

Resulting ontology after considering concepts from related work.

Instance data for a part of BMW's iX supply network.
Ontology Evaluation 1/2

Concise ontology

<table>
<thead>
<tr>
<th>Metric</th>
<th>Our ontology</th>
<th>PRONTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of classes</td>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td>Number of relationships</td>
<td>3</td>
<td>43</td>
</tr>
<tr>
<td>Number of leaf classes</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>Number of root classes</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Relationship richness</td>
<td>(\frac{3}{3} = 1.0)</td>
<td>(\frac{17}{43} = 0.4)</td>
</tr>
<tr>
<td>Inheritance richness</td>
<td>(\frac{0}{3} = 0.0)</td>
<td>(\frac{26}{35} = 0.74)</td>
</tr>
<tr>
<td>Depth of subsumption hierarchy</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Attribute richness</td>
<td>(\frac{2}{3} = 0.67)</td>
<td>(\frac{6}{35} = 0.17)</td>
</tr>
</tbody>
</table>

Metrics regarding ontology complexity compared with PRONTO.
Ontology Evaluation 2/2

Competency questions

▪ How many derivational dependency paths from a product to another certain product are there in a supply network?

▪ How many/much of a certain product does the creation of a product require across the supply network?

▪ Which enterprise sells a certain product in the supply network?
Limitations

- The expressiveness of our concise ontology is naturally limited compared to heavyweight ontologies like PRONTO
- The paper does not answer which network metrics to use for identifying bottlenecks
 - How to execute the calculation of metrics (with queries)?
 - How to weight and aggregate weights regarding alternative products?
 - How to determine weights if a product is only occasionally required for a variant?
 - How to consider overlapping supply networks?
Conclusion

- Ontology representing supply networks of products with derivational dependencies between them to identify bottlenecks among suppliers
- The ontology is concise and considers various concepts and definitions from existing ontologies
- Compared the ontology to PRONTO, an ontology with a similar scope