How well can “small” Language Models learn SPARQL w.r.t. a target KG?

Leveraging small language models for Text2SPARQL tasks to improve the resilience of AI assistance

Felix Brei, Johannes Frey, and Lars-Peter Meyer

Institute for Applied Informatics & Leipzig University

Supported by grants
FKZ: 13XP5116B FKZ: 01MK21007A
FKZ: 13XP5119F FKZ: 1MK22001A
How to get Knowledge out of a Knowledge Graph?

Writing a correct SPARQL query to answer a question requires knowledge about:

- Syntax/Semantics of SPARQL features
- Semantics of the classes, relations specific to one knowledge graph

LLMs can assist with that! → Chatbot Interfaces for non-technical users
Currently the models that perform best out-of-the-box are commercial hosted by 3rd parties:

- Data protection is an issue
 - Need to provide access to schema or other APIs (e.g. entity lookup)

- Availability risks
 - Service at capacity / too slow
 - Network issues
 - Breaking updates
 - Service discontinuation
 - Sanctions, regulations, wars

- Costs (longterm?)
 - Pricing policy could change anytime
Motivation

Empower small businesses or research facilities to use Text2SPARQL with “small & local” AI

- Hosting models of comparable size to GPT, Gemini, Claude, etc. can be prohibitively expensive due to infrastructure/deployment costs
- Don’t need an AI assistant that can do anything, but one that does one thing really good (UNIX approach)
 - After training, a model should be able to translate from natural language to SPARQL for one specific graph (only)
- Lots of open source language models are available for free and fit on “consumer-grade” hardware (8GB VRAM)
Step 1: Selecting language models

- According to a survey by STEAM, about 2/3 of their users have at least 8GB of VRAM available
- This is enough to hold a model with up to $1B$ parameters and some training data
- Crawling through Huggingface gave us the following model families for our task

<table>
<thead>
<tr>
<th>Family name</th>
<th>Parameter range in millions</th>
</tr>
</thead>
<tbody>
<tr>
<td>T5</td>
<td>60.5 - 738</td>
</tr>
<tr>
<td>FLAN-T5</td>
<td>77 – 783</td>
</tr>
<tr>
<td>BART</td>
<td>139 – 611</td>
</tr>
<tr>
<td>M2M100</td>
<td>418 - 600</td>
</tr>
<tr>
<td>MREBEL</td>
<td>484 - 611</td>
</tr>
</tbody>
</table>

How well do Open Language Models speak SPARQL? - Felix Brei
Step 2: Selecting datasets / target KGs

Aimed at three levels of difficulty: easy, medium, and hard

- **Easy: Organizational graph**
 - Well defined mapping between an IRI and the label of the object it points to (no cryptic identifiers)
 - Small, so only a few datapoints are needed to cover the full graph
 - Only well-known vocabularies (rdfs, owl, foaf, vcard, org)

- **Medium: CoyPu mini graph**
 - Real world example, subset of the knowledge graph from CoyPu project
 - Larger than first one, about the size of one context window of ChatGPT
Step 2: Selecting datasets (cont.)

• **Hard: Wikidata KG / QALD dataset**
 - Based on Wikidata (numeric identifiers)
 - Very large knowledge graph, LM must learn the structure of the graph only from the Question-SPARQL-pairs provided during training

• **QA Datasets for Org & Coypu:**
 - Pairs of natural language question and corresponding SPARQL were generated by ChatGPT, along with expected query result
 - All queries were executed on the resp. graph and the results compared with the expected answer to filter out wrong queries

How well do Open Language Models speak SPARQL? - Felix Brei
Step 3: Running the training / fine-tuning

- For each dataset we did the following things 10 times:
 - Shuffle the training data with a deterministic random seed
 - Train each of the models for 100 epochs
 - Run against validation dataset every 5 epochs
- Results on the right are for a single run to illustrate how the performance fluctuates
Results (Organizational)

- T5 family produced no correct query
- Other LMs manage to generate up to 14/16 correct SPARQL queries
- Outliers are present, rerunning the training after shuffling improved performance
- No clear winner, but NLLB-200 performs worst
Results (Coypu)

- Slightly different picture for CoyPu mini graph (medium difficulty)
- Especially the models that are pretrained on multilingual data perform well
- Performance hits ceiling at 20/26 correct SPARQL queries
Results (Wikidata/QALD)

- LMs did not produce in a single correct answer
- 104 out of 394 queries parsed
- 51/104 queries empty result
- 50/104 COUNT with 0 as result
- IRI identifiers and prefixes are a problem
Selected Findings & Conclusions & FW

• Fine-tuned LMs can generate well-formed SPARQL queries and also meaningful queries with little training data for KGs (with human readable edges)
 → Generating high quality training data for arbitrary knowledge graphs is an open issue

• Varying performance ranking across different KGs shows that there is not one single model that handles this task best
 → Experimenting with different models is encouraged and viable

• It is still under investigation, which properties of a graph favor which model architecture
 → More fine-grained analysis especially with our custom graphs
Future & Ongoing Work

Integrate/Align work into our LLM-KG-bench framework to assess fine-tuning efficiency in-depth

- Target KGs with slightly different IRI characteristics (e.g. numeric vs. human-readable)
- Iterative dialogs with feedback (syntax error, empty result set)

Different serialization formats (JSON-LD vs. Turtle)
Thank you

CONTACT
Felix Brei
brei@infai.org

Johannes Frey
frey@infai.org

Lars-Peter Meyer
lpmeyer@infai.org